Janne Kristian Lappalainen

Education

since 10/2020	Doctoral candidate , University of Tübingen and Max Planck Research School for Intelligent Systems, Advisor Prof. Macke
10/2017 - 03/2020	M.Sc. Neuroengineering, High Distinction, TU Munich
10/2013 - 07/2017	B.Sc. Physics, Distinction, University of Göttingen and University of La Laguna (via Erasmus)

Research positions

since 10/2020	Doctoral Researcher, Machine Learning in Science, University of Tübingen , Prof. Macke, in collaboration with HHMI Janelia Research Campus, Dr. Turaga
04/2019 - 10/2020	Research Intern and Remote Research Collaborator, HHMI Janelia Research Campus, Dr. Turaga
10/2018 – 02/2019	Research Project, TU Munich, GANs for predicting distributions of multi-agent pedestrian trajec- tories, Group of Prof. Leal-Taixé
09/2018 – 11/2018	Research Intern, TU Munich, Representational dissimilarity of stimuli in medial temporal lobe and deep neural networks, Group of Prof. Macke
02/2018 - 12/2018	Research Intern, Celonis SE, Munich, Data Science and Machine Learning
10/2017 – 02/2018	Research Project, TU Munich , <i>U-nets for nerve segmentation from ultrasound imaging</i> , Groups of Prof. Nießner and Prof Leal-Taixé
08/2013	Research Intern, Federal Institute for Materials Research and Testing, Berlin, Prof. Kreutzbrück

Publications and talks

	Peer-reviewed journal articles
2019	Lappalainen J. K. , Herpich, J., Tetzlaff, C., A theoretical framework to derive simple, firing-rate- dependent mathematical models of synaptic plasticity. Frontiers in Computational Neuroscience, vol. 13, May 2019, p. 26.
	Preprints
2024	Alphabetically ordered author list including Lappalainen J. K. and twenty others, A practical guide to statistical distances for evaluating generative models in science. ArXiv, abs/2403.12636 (preprint, under revision). <i>Contributions include concept, software, writing, visualization.</i>
2023	Lappalainen et al., Connectome-constrained deep mechanistic networks predict neural responses across the fly visual system at single-neuron resolution, bioRxiv, 2023 (preprint).
	Conference talks
2021	Connectome constrained simulations with task optimization lead to accurate predictions of tuning properties in the fruit fly visual system. Champalimaud Research Symposium 2021, Dialogues on Neural and Machine Intelligence, Lisbon.
2021	Connectome and task constrained neural networks. Workshop Bernstein Conference 2021, Machine Learning meets Neuroscience: from Spikes to Stimulation, Berlin.
	Selected poster presentations
2024	Connectome-constrained deep mechanistic networks enable hypothesis generation and refinement. Cosyne Abstracts 2024.
2023	Connectome-constrained deep mechanistic networks predict neural responses across the fly visual system at single-neuron resolution. Bernstein Conference 2023, Berlin.

2022	Cell-type specific visual selectivity emerges through connectivity and task constraints. Connectomics Conference 2022, Berlin.
2020	Inferring function from structure with connectome and task constrained neural networks. Cosyne Abstracts 2020.
	Invited lab meeting talks
2023	Prof. Ramdya lab, EPFL, Switzerland
2023	Prof. Gjorgjieva lab, Technical University of Munich, Germany

2022 Reiserlab, HHMI Janelia, Virginia, USA

Teaching assistance and tutoring

since 2020	Probabilistic machine learning; Computational connectomics seminar (lead lecturer) ; Data literacy; ML for scientific discovery seminar; Prof. Macke, University of Tübingen
2019	Statistics and probability theory, Large-scale modeling and large-scale data analysis; Prof. Macke, TU Munich
2016 – 2017	Classical mechanics, Prof. Volkert; Classical electrodynamics, Prof. Salditt; University of Göttingen

Community service & outreach

since 2023	Healthy Minds, Mental health in academia workshop and talk-series, Organizer with N. Effenberger,
	workshops are financially supported by the Excellence Cluster Machine Learning and the Tübingen
	AI Center, https://talks.tuebingen.ai/
since 2022	KI Macht Schule, volunteer, https://ki-macht-schule.de/

Professional development activities

2024	Leadership Talent Academy: Self Leadership, Impact, Innovation, People Leadership, Strategy & Change, University of Tübingen
2023	Best Practices for Academic Teaching, Dr. Maria Wirzberger
2021	Conflict Management for Scientists Training, Dr. Imke Lode
2021	Stress Management Training, Suzanne Jones
2021	Responsible Conduct in Research Training, Dr. Leila Masri

Supervision

2024	M.Sc. Machine Learning, Thesis: Integrating knowledge of neural tuning into connectome- constrained and task-optimized models, L. Ulmer, University Tübingen
2023	M.Sc. Machine Learning, Thesis: <i>Uncertainty estimation in connectome-constrained neural networks using Deep Ensembles</i> , P. von Bachmann, University Tübingen
2022	B.Sc. Medical Informatics Thesis, Thesis: <i>Decoding object movement from a neural circuit simulation of the Drosophila visual system</i> T. Thevururasa, University Tübingen
2021	M.Sc. Machine Learning, Essay rotation: <i>Actors and controversies around brain-computer interface development</i> , D. Schultheiß, University Tübingen
2021	<i>Mackelab meets datajoint: Data- and ML-experiment management</i> with M. Pals and T. Thevururasa, University Tübingen

Contributions to research grants

2022	Lead contributor . DeepCoMechTome: Using deep learning to understand computations in neural circuits with Connectome-constrained Mechanistic Models. ERC Grant, Prof. Macke, accepted.
2021	Lead author . Optical flow calculations with biologically realistic neural networks. Vector Stiftung Mint Innovationen, J. Lappalainen, Prof. Macke, shortlisted.
2020	Research and writing contributor. Dissociating neuronal representations along the ventral visual processing stream in the human temporal lobe. In DFG SFB "Synaptic microcircuits in health and disease", Prof. Macke (Co-PI), accepted.

Scholarships and awards

2024	Leadership Talent Academy scholarship, supported by the Karl Schlecht Stiftung (KSG)
2021	Federal Ministry of Education and Research Grant via Tübingen AI Center
2019	J-1 short-term scholarship, HHMI Janelia Research Campus
2017	Elite-Network of Bavaria Membership
2016	Erasmus+ EU Grant
2012	DPG Membership for an outstanding Abitur (university admission qualification)

Programming skills

• Programming languages: Python (proficient), MATLAB, C++, SQL (intermediate)

- Examples:
 - · <u>cbsp</u>: Numba repo for simulating neurons with calcium-based synaptic plasticity and learning of synaptic plasticity rules.
 - <u>datamate</u>: A lightweight machine learning lifecycle management tool.
 - · <u>dnnvsbrain</u>: Pytorch repo of analysis of deep neural network and brain activity patterns.
 - · flyvis: Pytorch repo for task-optimizing connectome-constrained neural networks of the fly visual system.

Languages

German: native, English: C2 (TOEFL iBT 118/120), Spanish: B1, French: A1